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Abstract--A two-stage procedure is described for the calculation of a best-fit ellipsoid from elliptical sections 
measured on three or more arbitrary planes. The first stage produces an initial, trial solution. This is used as a 
starting point for a standard, linear, least-squares treatment to determine the best-fit ellipsoid. 

Factors influencing the reliability of a solution (for example, number of measurements and quality of data) are 
discussed in the context of real and synthetic examples. The examples indicate that the procedure described is 
relatively robust and they allow guidelines for its routine practical application to be suggested. 

INTRODUCTION 

WHERE measurements of elliptical sections on three or 
more arbitrarily orientated planes are available, they 
may be combined to define an ellipsoid. The problem is 
essentially one of scaling the ellipse sections to represent 
a common ellipsoid; where redundant data indicate a 
degree of mismatch between the sections, the scaling 
must distribute the error appropriately. The elliptical 
sections may be measured directly, as, for example, 
where reduction spots are used for strain estimation, or 
they may be generated by one of the many methods of 
two-dimensional strain analysis, which can make use of 
a variety of strain markers. 

Solutions relating to the problem of ellipsoid estima- 
tion have been presented by a number of authors. At the 
simplest level, for the case where sections on principal 
planes are available, the three-axis plot provides a rapid 
method of arriving at a visually best-fitting solution 
(Owens 1974). For the more general case of an arbitrar- 
ily orientated set of three orthogonal planes, Helm & 
Siddans (1971) employed a matrix formalism to calculate 
the suite of six ellipsoids which arise by matching all 
possible combinations of elements in the matrices 
describing the section ellipses; these ellipsoids can then 
be averaged visually. This method has been decribed 
more fully by Shimamoto & Ikeda (1976). Mathematical 
approaches, tackling the problem of a matching directly 
and attempting to produce single 'optimum' solutions, 
have been described by Oertel (1978), for the case of 
data on three orthogonal planes, and by Milton (1980) 
and Gendzwill & Stauffer (1981), for the case of data on 
three arbitrary planes. 

In this paper a two-stage technique for the calculation 
of a best-fitting ellipsoid from data on three or more 
section planes is described. In the first stage a somewhat 
arbitrary scaling procedure is used to provide a set of 
initial solutions; one of these is then used, in the second 
stage, as a starting value for a procedure of least-squares 
refinement which leads, iteratively, to a best-fitting solu- 
tion. In comparison with previous papers on the three- 

dimensional problem of ellipsoid estimation, more 
emphasis has been placed on attempts to test the 
method, by using it to analyse sets of synthetic data (for 
which the true solutions are obviously known). The 
synthetic data can incorporate random perturbations, 
due to a variety of causes, so that the response of the 
method to noisy data can be evaluated and criteria 
developed for assessing the reliability of a solution. No 
attempt has been  made to consider systematic effects, 
which may bias the data. 

T H E O R Y  

Although the theory refers to the general mathemati- 
cal problem of solving for a best-fit ellipsoid, the most 
obvious application in structural geology is to the deter- 
mination of the strain ellipsoid and it is convenient to 
cast the argument in these terms. Thus given a strain S 
which relates a line before strain, denoted by the vector 
ri, to the corresponding line after strain, denoted by rf 

rf = Sri. (1) 

Consider its effect on a sphere of unit radius, defined by 

rirri = 1 (2) 

where rT is the transpose of r~. Substituting (1) in (2) the 
equation of the strain ellipsoid is 

rT(S-I)T(s -I) rf = 1. (3) 

If the strain is written as a product of pure shear and 
rotation 

S = PR (4) 

(3) becomes 

o r  

rT(p-l)r(p-I)rf  = 1 

rTp--IP--lrf = 1 (5) 

which is the mathematical expression of the fact that the 
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strain ellipsoid carried no information about any rota- 
tional component of strain (e.g. Owens 1973). 

In the general case P is a symmetric, second rank 
tensor, but if it is diagonalized and so referred to its 
principal axes 

P =  E a b c l  (6) 

and (5) becomes the familiar 

x2/a 2 -F y2/b2 d- z2]¢ 2 = 1. (7) 

By introducing 

Q = p- ip - i  (8) 
equation (5) can be written 

rTQrf-- 1. (9) 

Q is a symmetric, second rank matrix. Its principal axes 
are those of P and its principal values are related to those 
of P as 

qi = lip 2. (10) 

The q~ are reciprocal quadratic elongations (Ramsay 
1967, p. 66). 

The initial problem is to determine the elements of Q 
in eqn (9). At this stage, concern is primarily with 
ellipsoid shape rather than absolute size, so one element 
can be assigned arbitrarily and five remain to be deter- 
mined. To find these from ellipses measured on planes 
intersecting the ellipsoid, an equation is required for the 
elliptical trace seen on such a plane (Ramberg 1976). 
Rather than solve the problem of a general plane inter- 
secting the ellipsoid, it is more convenient to view the 
problem with respect to a set of axes (xe, Ye, ze) within 
and perpendicular to the plane, the axes within the plane 
being taken parallel to the principal axes of the ellipse. 
Referred to these axes, an ellipse of axial ratio re has 
equation 

X2e/r2~ + y~ = 1/C, (11) 

where C is a scaling factor. (The ellipse axes are r J C  I~, 
1/C~/2). This equation may be written as 

[x~ y e ] [ C / r  2 c ] [ X e ]  = l ' r e  (12) 

If A is the rotation matrix relating the reference axes 
(x, y, z) and the (x e, y¢, ze) axis set, such that 

r~ = Ar, (13) 

then (9) becomes 

r~AQATr~ = 1 (14) 

or, if 

W = AQA T, (15) 

L w31 w32 w33...I Ze 

and the intersection with the xy plane (defined by z = 0) 
can simply be written, in matrix terms, as 

(The intersection with a parallel plane, say at z = d, 
simply alters the constant on the right hand side.) 

The formal identity of equations (17) and (12) gives 
rise to three equations: 

14"11 = CIr~ 
wl2 = w2, = 0 (18) 
W22 = C.  

The elements of W combine the unknown elements of Q 
with the known elements of the rotation matrix A. Thus, 
from a single plane we have three equations for six 
unknowns: the five elements of Q and the scaling factor. 
Specifically, if q33 --" 1 is set arbitrarily 

~lq l l  + 2alla12q12 + 2alla13q13 
+ a22q22 + 2a12a13q23 -- CIr 2 = -a23 

auaElqu + (aua22 + a12aEl)q12 + (aria23 + a13a21)qt3 (19) 
+ a12a22q22 + (a12aE3 + a13aE2)q23 = -a13a23 

a21qu + 2a21a22q12 + 2a21a~qx3 + a22q22 
+ 2a22a~q ~ - C = -a23 . 

These may be rewritten in matrix form as 

I 
~ a2| 2al la12 2allal3 a22 2a|2a|3-~ 

I a l l a2 i  a l ia22 a l ia23 a12a22 a12a23 I 
I I 
I +a12a21 +a13a21 +at3a221 
t..I a~l 2a21a22 2a2|a23 a22 2a~2a~3/~ _ 

r, _,,re--21, ---,,,q = 1 
| 0 | q,2, -at3a231. (20) I I 
L -Ij i,~ I -a~3 / 

q221 
I 

t. q23j 
- C 

Symbolically this may be written, using partitioned mat- 
rices, as 

[A~ r , ] [ q ]  = [ a ' , ] C ,  (21) 

where the subscript signifies the first plane. Expanding 
this to take account of more intersecting planes, for 
example three planes 

o o, c, (22) 
0 0 La;_l 

C3 

where the matrices are of order 9 x 8, 8 x 1 and 9 x 1, 
respectively. In the general case, forn planes, the dimen- 
sions are (3n, n + 5), (n + 5, 1), and (3n, 1). For n I> 3 
there are more independent equations than unknowns 
and a solution for the overdetermined equations can be 
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obtained. Golub 's  method for a least-squares solution, 
as described by Claerbout (1976, p. 116 and fig. 6-1) has 
been used. 

It is important to note that the solution obtained at this 
stage is not a 'best-fit' solution, since the equations are 
not cast in the appropriate form. In the standard, linear 
least-squares problem 

Mx = b (23) 

is solved, where b is a column vector of observations, x is 
the column vector holding the solution and M is the 
matrix relating the observations and solution. The 
optimum, least-squares solution is that which minimizes 
the sum of squares of differences between the observed 
values of b and those predicted from the solution 

6 b  = b - Mx 
6bTSb = minimum. (24) 

In eqn 22, however,  the observed quantities, which are 
the orientations and axial ratios of the elliptical sections, 
are scattered through both the matrix on the left hand 
side and the vector on the right. No obvious physical 
significance can be attached to the quantity that is 
minimized. It is, indeed, possible to recast the equations, 
not on the basis o f  q3 3 = 1 as in (19), but by applying this 
normalizing condition to the five other elements, qi j ;  all 
six solutions are routinely sought. For perfect input data 
each of these six sets of equations yields the correct 
solution. For imperfect data the solutions diverge, and if 
the data are sufficiently noisy, some (or occasionally all) 
of the solutions may lead to negative eigenvalues and 
thus give results which cannot be interpreted as ellip- 
soids. 

If a solution to an equation like (22) can be obtained, 
its value is that it can provide a starting point, which may 
be close enough to the final solution to allow a linear 
treatment to be adopted in a process of  least-squares 
refinement (e.g. Clifford 1973). In this process the dis- 
crepancies between the observed quantities and those 
calculated from the initial solution are used to derive a 
series of adjustments to the starting values. Clearly the 
adjusted values can be treated in a similar fashion, so the 
procedure can be carried out iteratively. 

In the present case a set of observations consists of the 
strike and dip of a plane, the pitch of an ellipse long axis 
within this plane and the axial ratio of the ellipse. It is 
assumed that the strike and dip can be measured with 
negligible error; thus the case is only considered where, 
for a variety of reasons (e.g. non-sphericity of the origi- 
nal markers), the observations of pitch and axial ratio r e 
may be in error. 

The direct use of the observed values of pitch and axial 
ratio as the vector of observations, b in equation (23), 
raises problems. In setting up a least-squares solution it 
is implicit (if arbitrary weighting is not to be introduced) 
that all the error terms (i.e. the elements of 6h in 24) are 
of the same order. Since the error in pitch is related to 
the axial ratio of the ellipse (the major axis becomes 
indeterminate as the ellipse becomes circular), this con- 

dition is not satisfied and a more appropriate choice for 
the vector b must be sought. 

If it is argued that scatter arises principally from 
non-sphericity in the original markers, some guidance 
may be drawn from the equation given by Ramsay 
(1967, eqn. 5.24, p. 208), connecting the fluctuation, or 
maximum deviation of ellipse major axis direction from 
the extensional strain direction (¢bmax in Ramsay's  nota- 
tion) with the initial ellipse axial ratio, re, and the strain 
ellipse ratio, r t. A tongue-in-cheek development of the 
equation proceeds as follows: for small axial ratios re 
write 

r e - 1 = S r e .  

Then, from a development of Ramsay's  equation, to first 
order in re, 

tan 2¢bmax = 2 r t r r e / ( ~  - 1) 

so that, for small ~bma, (which implies re small compared 
with rt) 

(r, - 1/rt)~bmx = 6 r  e 

But 

therefore 

In re = In (1 + 6re)  = 8 r e . . .  

(rt - l/rt)~bmax ~ In re. (25) 

The consequences of this approximation may be com- 
pared with the results plotted by Ramsay (1967, fig. 
5.26, p. 208). The development is roughly equivalent to 
approximating the familiar pear-shaped contour on an 
R f l 4 ~  plot (Dunnet t  1969) by an ellipse of axial ratio 
(rt - lift). It implies that fluctuation values, when mul- 
tiplied by (rt - l/rt), are of the same order as In re. It 
must be emphasized that the treatment is approximate 
only, but it leads to the suggestion that appropriate 
variables to use in the minimization procedure of (24) are 

b2i = In r i 

"and 

so that 

b2i+x = ( r t -  l/rt)xi (26) 

and 

8b2i = I n  r i - I n  rti " ~ "  I n  ri/rti = I n  rei 

6b2i+1 = (rt - l/rt)(Xi - )(ti), (27) 

where ri and Xi are the observed axial ratio and pitch of 
the ellipse on the ith section and rti and Xti are the values 
calculated for that section from the trial ellipsoid, so that 
the last two equations relate, respectively, to the initial 
ellipse axial ratio and to the fluctuation. 

In a linear least-squares refinement solution, the error 
vector 6b is related to the adjustment 6q in the ellipsoid 
parameters by 

abi 
Oq---~ &/i = 8 b i ,  (28) 
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where the summation is taken over five of the six values 
of q, since the set of initial values has been scaled so that 
one value, say q33, has unit magnitude. 

For three or more planes, equations of the form of eqn 
(28) can be expressed in the standard matrix form for 
least-squares refinement: 

I ] FC°lumnl  = r C ° l u m n l  ( 2 9 ) d i f f e r e n t i a l s M a t r i x  of I_/vector | | vector | 

8q J L 8b J 

with dimensions, for n planes, of (2n, 5) 5 and 2n, 
respectively. These may be solved for the adjustments 
&! by Golub's method, referred to above. In the present 
treatment the matrix of differentials has not been 
derived analytically, but has been approximated by cal- 
culating the differences Ab which arise from two values 
of q separated by a small difference Aq about the value 
for the trial solution. The elements of the vector q, 
adjusted by the values of 6q, are used to construct the 
matrix Q (equation 8) which can then be diagonalized to 
give the directions and magnitudes of the reciprocal 
quadratic elongations, and hence of the principal axes of 
the ellipsoid. 

APPLICATION AND EVALUATION 

In this section results will be discussed which have 
been obtained using programs based on the analysis 
described above. The calculation proceeds in two stages: 
first a series of initial, trial solutions is sought; any one of 
these can then be taken and refined, in the second stage, 
to obtain the best-fit ellipsoid. No formal treatment of 
errors of estimation for the best-fit ellipsoid has been 
derived. However the program, in addition to calculat- 
ing an ellipsoid, also produces measures and summary 

parameters which can be used to gauge the reliability of 
a solution. The examples below have been chosen to 
illustrate the influence of different factors on the quality 
of a solution and the role of the error indices in assessing 
that quality. 

The first example, of reduction spot measurements on 
a single block, illustrates the nature of the primary data 
required for the programs and the form of results, both 
solution. In the first of these are considered the results of 
examples investigate the significance of the error 
measures and their relationship to the reliability of the 
solution. In the first of these are considered the result of 
a series of simulation exercises on synthetic data in 
which the effects of sample size, initial particle shape 
and reading error are examined. Finally, on the basis of 
the last example, the discussion is extended to examine 
the response of the programs to gross errors (arising, for 
example, from misreading). This example again uses 
reduction-spot data, which were in this case collected in 
the field. 

Block sample, N. Wales 

In Table i are listed measurements of reduction spots 
made on an unorientated block of slate from Dinorwic, 
N. Wales. Where repeated measurements, say N, have 
been made on a given plane or on nearly parallel planes, 
they have been weighted as 1/N 1/2. Table 2 gives the five 
(out of six) trial solutions which produced ellipsoids and 
the final, best-fit solution to which all the trial solutions 
converged; in the table natural strains are normalized to 
~ = 0 and thus refer to an ellipsoid of volume 4n. The 
input data are plotted on a stereogram in Fig. l(a). 
Principal axis directions for the trial and best-fit solutions 
are shown in Fig. l(b) and the strain magnitudes are 
presented on a three-axis planar diagram (Owens 1974) 

Table 1. Input data 

Long axis Short axis 
Strike Dip Pitch (ram) (mm) Axial ratio Weight 

- 5 8  78 165 16.5 4.5 3.67 0.58 
- 5 9  77 166 9.5 3.5 2.71 0.58 
122 105 14 20.5 6~8 3.01 0.58 
21 109 7 37.0 6.0 6.17 1.00 

- 2  109 0 7.5 1.5 5.00 1.00 
198 101 170 16.7 3.0 5.57 0.58 
197 102 172 22.0 4.0 5.50 0.58 
199 102 173 18.0 3.0 6.00 0.58 

Table 2. Trial and best-fit solutions 

Basis 

Maximum axis Intermediate axis Minimum axis 

Natural strain Declination Dip Natural strain Declination Dip Natural strain Declination Dip 

q33 = 1 0.91 32 10 0.14 305 -- 13 -- 1.05 86 --73 
qlt = 1 1.39 227 -- 12 --0.13 319 --9 -- 1.26 85 --74 
qt3 = 1 1.29 40 12 -0 .07  313 - 10 - 1.23 82 - 7 4  
q22 = 1 0.82 17 6 0.17 289 -- 16 --0.98 86 --73 
q23 = 1 0.89 31 10 0.16 304 -- 14 -- 1.05 86 --73 
Best-fit 0.85 29 10 0.18 302 - 14 - 1.03 85 - 7 3  
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Fig. 1. Reduction spot measurements from an unorientated block, 
Dinorwic, N. Wales. (a) Data planes are indicated by partial traces 
about the pitch of reduction spot long axes, marked by crosses. The 
principal axis directions for the best-fit ellipsoid are plotted as solid 
symbols (maximum, square; intermediate, triangle; minimum, circle). 
The dashed line is the trace of the plane containing the maximum and 
intermediate ellipsoid axes. (b) Stereogram of principal axis directions 
for the trial (open symbols) and best-fit (closed symbols) ellipsoids. 
Axis convention as in (a). (c) Three-axis plot for the trial (crosses) and 

best-fit (solid circle) ellipsoids. 

in Fig. l(c). (Where, as in this figure and in Fig. 4, the 
plot conveys information on ellipsoid shape alone, only 
the sector defined by the major and minor axes ~1 and ~3, 
is plotted.) 

For comparison with the input data, the program 
calculates the values of ellipse axial ratio and pitch 
predicted for the observed planes from the ellipsoid 
solution. For each plane the calculated section ellipse 
can be used to 'unstrain' the observed ellipse to produce 
a notional 'undeformed ellipse'. These results are given 
in Table 3. The weighted log-mean of the undeformed 
ellipse axial ratios, denoted by p, can be used as a 
measure of goodness of fit. For this example the value of 
p is 1.10; the significance of this value will be discussed in 
the light of the experiments with synthetic data. 

Simulation exercises 

The input data for these experiments were derived 
from a program which applies a specified strain to ran- 
domly orientated ellipsoids of given axial ratio and 
calculates the resulting ellipse sections on randomly 
orientated planes. Systematic effects, arising from the 

Table 3. Section data calculated for planes of observation 

Undeformed 
Axial ellipse axial 

Strike Dip Pitch ratio ratio 

-58  78 165 3.15 1.17 
-59  77 165 3.14 1.16 
122 105 15 3.08 1.06 
21 109 7 6.26 1.03 
- 2  109 1 4.88 1.07 
198 101 172 5.70 1.26 
197 102 173 5.61 1.06 
197 102 172 5.72 1.11 

fact that the trial solutions are tied to the reference axis 
frame (by setting specific elements qij tO 1 ; see eqn 19), 
are avoided by orientating the principal strain axes 
randomly with respect to the reference axes. 

The results of the simulations are given in Figs. 2 and 
3. The calculated principal axis directions are plotted 
sterographically in the principal axis frame of the applied 
strain and magnitudes are given on three-axis plots 
(Owens 1974). Where a set of results is closely coaxial, 
the full three-axis plot may be used to convey both 
magnitude and relative directional information (e.g. 
interchange of minimum and intermediate axes; see Fig. 
2f). Where the principal axes are scattered, the results, 
plotted in one sector only, carry information about 
magnitude alone, and must be interpreted in conjunc- 
tion with the stereograms of principal axis directions. An 
intermediate case, which arises in the simulations given 
below, is that in which one axis only is closely related to 
the principal axis frame of the applied strain; here some 
measure of directional information has been preserved 
in the three-axis plots by indicating, with a dashed line 
bounded by the calculated values, a range of solutions 
between sectors. 

In the examples two initial ellipsoid shapes have been 
considered. The examples using axial ratios of 
1.1 : 1.0: 0.91 relate to cases either where strain markers 
can be taken as originally nearly spherical, or where the 
ellipse sections for given planes have been derived by 
some method of two-dimensional strain analysis to this 
order of precision. Examples using axial ratios of 
1.3:1.0:0.67 are more relevant to analyses (e.g. of 
deformed conglomerates) in which there is a pro- 
nounced initial ellipsoid shape. In all the cases con- 
sidered, a strain of 1.65:1.0:0.25 (natural strains 
~x = 0.80, % = 0.30, Ez = - 1 . 0 9 ) ,  representative of 
values found in slate belts (Wood 1974), has been 
applied. 

Two aspects of the method of analysis are considered: 
firstly, the interaction of initial ellipsoid shape and sam- 
ple size in determining the accuracy of the solutions and, 
secondly, the manner in which the method reacts to 
random errors in variables not considered in developing 
the analysis. 

(i) Initial ellipsoid shape and sample size. Three sample 
sizes, of 3, 10 and 30 sections have been adopted; for the 
case of three sections, both randomly orientated and 
orthogonal sets are examined. In all cases ten different 
sets of data have been generated; for some of these no 
solution could be obtained. 

The results are given in Figs. 2(a-d & f-i). They 
demonstrate that, as expected, accuracy increases with 
increasing sample size and with decreasing initial ellip- 
soid axial ratio. In the case of samples of three sections, 
however, it is salutary to note how much better are 
solutions based on orthogonal, rather than random, 
sections. 

The log-means of the undeformed ellipse axial ratios, 
p, are plotted in Fig. 3. From a comparison of the scatter 
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Fig. 2. Synthetic data generated for a strain of ~x -- 0.80, ~y -- 0.30 and ~= = - 1.09, for varying combinations of initial ellipsoid 
axial ratio and number of data planes. Stereograms and three-axis plots for successful best-fit solutions from, in each case, 
ten randomly generated data sets. In the stereograms, the x axis is vertical, z into the paper. Upper row: initial ellipsoid 
1.1 : 1.0:0.91. Lower row: initial ellipsoid 1.3:1.0:0.67. (a) & (f): 3 orthogonal sections; (b) & (g): 3 random sections; (c) 
& (h) 10 random sections; (d) & (i): 30 random sections and (e) & (j): 30 random sections, angular data perturbed by random 

error of 3* standard deviation. 
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Fig. 3. Histograms of log-mean undeformed ellipse axial ratios, p, for 
the solutions, from synthetic data, given in Fig. 2. The number of 
successful solutions (out of ten) is shown at the right. The log-mean 
ellipse axial ratio, Pi, for l. 1 : 1.0:0.91 and 1.3:1.0:0.67 ellipsoids are 

respectively, 1.12 and 1.50. 

of solutions shown in Fig. 2 with the values of p in Fig. 3, 
it is clear that p cannot, on its own, be used as a positive 
indication of the accuracy of a solution. Closeness of the 
value of p to unity merely indicates how well the sections 
on which the solution is based combine to form an 
ellipsoid; the probability of such fortuitous conjunctions 
obviously decreases with increasing sample size. 
Associated with a particular initial ellipsoid shape there 
is a particular value of p, say, Pi; for the two ellipsoid 
shapes adopted in these simulations the values are 
respectively 1.12 and 1.50. If, in practice, the initial 
value Pi were known, the calculated values o fp  could be 
used, negatively, to reject solutions, were there a large 
difference, of either sign, between p and p~. A small 
difference would not, however, necessarily imply that 
the solution was reliable. 

It is appropriate, at this point, to reconsider the 
example given in Fig. 1. Although the solution shows a 
high degree of internal consistency (p = 1.10), it should 
be noted that it is, effectively, based on only four planes 
which are not evenly spaced. Further measurements 
would clearly be desirable. 

(ii) Random reading errors. The method of analysis 
assumes that errors arise only in ellipse axial ratio and 
pitch, so that the orientation of the plane of section is 
known accurately. The effect of reading errors in section 
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Fig. 4. Reduction spot measurements from Val de BIore, Alpes Maritimes; conventions as in Fig. 1. (a) Input data and 
best-fit ellipsoid solution from (d, e) below. (b, c) Trial and best-fit solutions based on all data, equally weighted. (d, e) Trial 

and best-fit solutions omitting data queried in (a). 

plane orientation must therefore be examined. Further, 
at high strains, fluctuation (in the sense of Ramsay 1969, 
p. 202) is small so that reading error may be a significant 
source of variation. These effects have been investigated 
by perturbing the angular data in the previous sets by a 
normally distributed error of specified standard devia- 
tion. (This rather simple model neglects the inter- 
relationship of errors in strike and dip; see Woodcock 
1976). The results for samples of 30 sections, with a 
reading error of 3 ° standard deviation, are given in Figs. 
2(e & j). The effect of the perturbation is, as might be 
expected, to increase the scatter of solutions and to 
increase the value of the log-mean undeformed ellipse 
axial ratio. 

Field data, Alpes Maritimes 

When presented with a data set containing erroneous 
readings the programs will, in most cases, produce a 
solution, so it is important to develop criteria for recog- 
nizing the presence of bad data. The effect of gross 
errors in the data is illustrated in Fig. 4. The data are of 
reduction spots in the Permian red-beds of the Alpes 
Maritimes, measured at exposures near Val de Blore. 
For a flattening strain one expects that the long axes of 
the measured ellipses will, in general, lie in or close to 
the plane of flattening. In Fig. 4 two long axes diverge 
considerably from the swath defined by the rest of the 
data. The solution including these two data has p = 1.44; 
that ignoring them has p = 1.15. The ellipses in question 
have axial ratios and long axis pitches of 1.90, 137" and 
2.36, 15 ° , compared with predicted values based on the 
ellipsoid solution calculated without them, of 2.45, 40* 
and 2.80, 49 ° . The observed and calculated axial ratios 
are in reasonable agreement, so it is possible that the 
data are truly in error, the first recording pitch from the 
wrong strike azimuth (137 ° + 40 ° ~ 180°), the second 
arising as 50 ° misheard as 15 °. 

In general the presence of bad data may be indicated 
in a variety of additional ways. 

(a) The value of p, the log-mean undeformed ellipse 
axial ratio, will be greater than one would reasonably 
expect. 

(b) If the rogue data do not overwhelm the solution 
(they form, say, 10% of readings), they will have, as in 
the case discussed above, individual 'undeformed 
ellipse' axial ratios that are markedly high. 

(c) If the data set is sufficiently poor to force a 
compromise solution, the individual predicted ellipse 
axial ratios will all underestimate the observed values 
(instead of scattering above and below them). 

(d) For consistent, in contrast to poor, data sets, initial 
trial solutions based on different qij values will be close 
and will converge rapidly to a best-fit solution. 

CONCLUSIONS 

The method described here has been tested against 
synthetic data and has been applied to a number of field 
problems (Kligfield et al. 1981a, b). Against this back- 
ground the following guidelines for assessing the reliabil- 
ity of a solution may be established. 

(1) Although the minimum number of sections re- 
quired for a solution is three, and the solution is then 
marginally overdetermined, it is clearly advantageous to 
have a greater number of section planes if possible. The 
number of sections required for a given accuracy of 
solution will depend on how closely the section data 
correspond to section ellipses (i.e. sections through the 
strain ellipsoid) rather than defining ellipses influenced 
by initial object shape. (Where measurements derive 
from objects which were not originally spherical, it has 
been assumed that the orientation of the objects was 
initially random, otherwise systematic errors would 
arise.) 
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(2) Where three sections only are used, they should, if 
possible, be taken on orthogonal or near-orthogonal 
planes. In general one should aim for a uniform (rather 
than random) distribution of planes. The observed 
planes and ellipse long-axis directions should be plotted 
on stereograms in the field. This will aid the collection of 
a uniform spread of data and should eliminate some 
classes of gross error. 

(3) Comparison of observed section ellipses with those 
predicted from the solution provides an indication of the 
internal consistency of a solution. The predicted ellipses 
can be used to 'unstrain' the observed ellipses to provide 
'undeformed ellipses'. These should not be influenced 
strongly by the axial ratios of the ellipsoid and they 
therefore offer a basis for comparison between solu- 
tions. The log-mean undeformed ellipse axial ratio, p, 
has been used as a summary parameter. Low values ofp 
indicate a high degree of internal consistency but do not 
necessarily indicate a solution close to the true strain 
ellipsoid. The initial shape of the strain markers will, 
ideally, determine an expected value for p. Values below 
this may arise from a fortuitous conjunction of ellipse 
sections; the likelihood of this occurring is greater where 
a small number of sections is involved. Random reading 
errors in field observations cause the expected value ofp 
to rise above the theoretical value for a given shape of 
marker. So, too, do local departures from uniform 
strain. Values of p much larger than expected suggest 
that the data set is unreliable; in some cases questionable 
data items in the set can be identified. 
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